公务员备考之判断推理第一节——翻译推理及分析推理

一、翻译推理

1、题型识别

  1. 题干有关联词
  2. 题目为“推出类”提问

满足以上两个要求的则为翻译推理类题目。

例如:题干说明:如果坚持锻炼,阿尔茨海默症等神经退行性疾病的发病风险会降低。(包含关联词:如果…就…)

题目问:由此可以推出(为推出类提问)

2、知识点

2.1 假言命题

在假设条件下推出的命题,一般包含以下两种表达式

1. 如果P,则Q(前推后)

翻译规则: P -> Q

推理规则:肯前必肯后,否后必否前,否前肯后不必然

所有的翻译推理中,推理规则只针对翻译表达式

2. 只有Q,才P(后推前)

翻译规则: P -> Q

推理规则:肯前必肯后,否后必否前,否前肯后不必然

后推前示例:只有尊重自然,才能有效防止在开发利用自然上走弯路

以上翻译规则为:防止走弯路 推出 尊重自然

2.2 关联词替换表达

除了上述 如果…则…只有…才… 这两个最基础的关联词之外,还有一些同义的替换词

1. 前推后
  • 如果(假如/若)…就(那么/则…):如果考第一,就出去玩(考第一 推出 出去玩)
  • 只要…就(那么/则)…:需要和只有才区分开
  • …是…的充分条件
  • 不…不(就)…:不到长城非好汉(不到长城 推出 不是好汉)
  • 要(是/想)…就(那么/则)…:要想考高分,就得多做题(考高分 推出 多做题)
  • 没有…(就)没有…:(如果)没有共产党就没有新中国(非共产党 推出 非新中国)

可能会出现省略如果的情况,例如:穷则独善其身,可以理解为如果穷,则独善其身。所以穷 推出 独善其身

2. 后推前
  • 只有…才…
  • 除非…否则不…:除非成绩合格,否则不予毕业(毕业 推出 成绩合格)
  • 除非A否则B:非B 推出 A,除非早出门,否则会迟到(没迟到 推出 早出门)
3. 找必要

找必要的相关替换:必要的/必须的放在“箭头”后面。

例如:补钙,是长高个所必须的。 长高个 推出 补钙

  • 前提、基础、关键
  • 必须、必要
  • 必不可少、不可或缺
  • 不能没有、离不开

2.3 联言命题

联言命题为且关系

表达式: A 且 B

关联词: 且、和、都、既…又…、但(但在推理中表示且的意思。例如:我很丑但很温柔)

推理规则: 同真才真,一假则假

2.4 选言命题

选言命题为或关系

需注意 A或B 和 要么A,要么B的区别:前者是至少一个,后者是只能有一个

表达式: A 或 B

关联词: 或、或者、至少一个

推理规则: 同假才假,一真则真

否一肯一: 否定一个,推出另一个为真。已知A或B为真,则 非A 可以推出 B

2.5 德摩根定律

表达式: 非(A或B) = 非A 且 非B;

​ 非(A且B) = 非A 或 非B

二、分析推理

1、题型识别

分析推理的题型识别主要在于对象和特征匹配。

例如,题干包含三个人和三个项目,题目让将人和项目对应起来。

2、知识点

2.1 排除法

使用前提:选项信息充分全面,则对象和特征数量完全一致

直接排除:当题干信息确定,即题干信息完全确定为真时,直接用选项进行排除

代入排除:当题干信息不确定全部为真,可以假设选项正确,代入题干,验证是否符合题目要求

2.2 确定信息法

使用前提:选项信息不充分(不完成、不全面)

使用方法:确认匹配/不匹配信息,整理标注(列表)

2.3 最大信息法

使用方法:将题目中出现次数最多的信息作为解题“突破口”

2.4 假设法

使用方法:当没有唯一推导路径时,假设某一种情况为真进行推导